Utilizing GPU for CyberGIS

TODD MOSTAK & LEX BERMAN

CENTER FOR GEOGRAPHIC ANALYSIS
HARVARD UNIVERSITY
Temporal Gazetteers http://fas.harvard.edu/~chgis/gazetteer

Conferences and Workshops

Special Track on Historical Gazetteers: Temporal Elements
Symposium on Space-Time Integration in Geography and GIScience

2011 AAG Seattle Presentations Session Program

Working Digitally with Historical Maps
Special sessions hosted at the New York Public Library

2012 AAG New York Presentations Session Program

Reference Bibliography

Selected References

date authors
2011-11 Southall, Mostern, Berman
2011-03-10 Keith Murray
2011-02-24 Barker, Isaksen
2011-12-03 Krzysztof Janowicz
2010-06-24 Auer, Fees, Zipf
2010-06-24 Popescu, Grefenstette
2010-06-03 Sean Gillies
2009-11-06 Kessler, Janowicz, Bishr
2009-10-29 Auer, Lehmann, Hellmann
2009-09-07 INSPIRE Working Group
2009-03-01 Manguinhas, Martins, Borbinha, Siabato
2008-04-04 Aucott, et all
2008 Goodchild & Hill
2006-12-09 Janee
2006-12-09 NGA Workshop
2004-02-26 Hill, Janee

Temporal Gazetteer Web Service

CHGIS XML API
WorldMap Example

http://worldmap.harvard.edu/china

- High Speed Rail (2010) & Historic Routes
- Taiwan Rail and Pop (2000)
- Urban Data, Beijing (1916)
GEOPS: GEOSPATIAL OPERATIONS SYSTEM

GPU ACCELERATION OF GEOSPATIAL QUERIES

Todd Mostak
WHY THE GPU?

- Inadequacy of conventional desktop GIS software for handling big datasets
- Today’s GPUs possess massively parallel processing capability
 - Between 500 to 3000 cores for high-end GPUs
 - High memory bandwidth: 200-400 GB/s
 - Versus 20-40 GB/s for a high-end CPU
 - Data is easily rendered graphically if it is already on the GPU
- Challenges
 - Difficult to keep all cores occupied
 - Particularly under divergent execution paths
 - Certain problems are difficult to parallelize
 - Speed between GPU and main memory is limited by PCI-E speeds
 - 4.0 GigaTransfers / sec for PCI-E 2.0
 - 8.0 GigaTransfers / sec for PCI-E 3.0
FEATURES OF GEOPS

• Full column-store in-memory persisted database written in C++ / CUDA with Postgres and “Grim Tweeper” connectors
 • Data can reside on GPU or be streamed asynchronously from CPU memory

• Text stored and searched as product of prime numbers
 • Compresses text while allowing for fast lookups without the overhead of constructing traditional inverted indices

• Tests for spatial intersection are performed by rasterizing vector layers (such as map polygons)
 • Each “pixel” in the raster stores the id of the associated polygon
 • To find the bounding polygon for a feature, GEOPS converts its map coordinates to raster coordinates and retrieves the pixel (id) value at that position

• On the fly generation of pointmaps, heatmaps and choropleths
 • Amazon GPU instance with 2 GPUS can render Gaussian kernel heatmap of 120 million tweets in 1/20th second

• Scales linearly with additional GPUs
• Full stand-alone WMS-T webserver that also emits json to construct graphs of any attribute over time
WORDS AS PRIMES

- Text is stored on the GPU as the product of a series of primes – one per each word
- The most frequently appearing words in a corpus are assigned the lowest primes
- To test if a word, or a series of words, are contained in a text field, we can simply check if the prime associated with the word divides into the field’s prime product evenly
 - In practice, a bitshift trick is used to avoid a relatively costly division operation
- Also compresses text
 - ~ 5X for Twitter data
- Since no indexes are needed for text lookups, rows of data can be streamed onto the GPU and are available for immediate visualization and processing

<table>
<thead>
<tr>
<th>Word</th>
<th>Freq. Rank</th>
<th>Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>I’m</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>at</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>the</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>a</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>to</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>you</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>my</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>and</td>
<td>9</td>
<td>29</td>
</tr>
<tr>
<td>me</td>
<td>10</td>
<td>31</td>
</tr>
</tbody>
</table>

Text: To you, I’m me.

\[17 \times 19 \times 5 \times 31 = 50,065\]

Is “at” (7) in the text?
No, since 50065 % 7 ≠ 0

Is “you” (19) in the text?
Yes, since 50065 % 19 = 0
SPATIAL INTERSECTIONS

- GEOPS rasterizes polygons inputted in vector (shapefile) format and then lookups features against the resulting raster.
- Much faster than conventional R-Tree techniques used by systems such as PostGIS.
- If feature falls on pixel marked as border between polygons, geometrical techniques can be used to disambiguate.
- Next step: use linearized quad-trees as rasters.

Query:

```
Query: SELECT country_name, count(*) FROM tweets, boundaries
WHERE ST_INTERSECTS(tweets.geom, boundaries.geom) GROUP BY country_name;
```

<table>
<thead>
<tr>
<th></th>
<th>PostGIS (cached)</th>
<th>GEOPS-DB (CPU – 1 thread)</th>
<th>GEOPS-DB (CPU – 6 threads)</th>
<th>GEOPS-DB (GPU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tweet Lookups</td>
<td>100,000</td>
<td>117,851,856</td>
<td>117,851,856</td>
<td>117,851,856</td>
</tr>
<tr>
<td>Time (sec)</td>
<td>118.4</td>
<td>1.471</td>
<td>0.2410</td>
<td>0.1805 (.1722 kernel execution)</td>
</tr>
<tr>
<td>Lookups per second</td>
<td>844.53</td>
<td>80.171 million</td>
<td>489.011 million</td>
<td>652.92 million (684.39 million w/o memory transfer)</td>
</tr>
<tr>
<td>Speedup (versus PostGIS)</td>
<td>--</td>
<td>94,929.7 X</td>
<td>579,033.3 X</td>
<td>773,116.4 X (810,379.74 X)</td>
</tr>
<tr>
<td>Platform</td>
<td>Intel i7-3930k 3.2 Ghz (single threaded) 16 GB RAM</td>
<td>Intel i7-3930k 3.2 Ghz (single threaded) 16 GB RAM</td>
<td>Intel i7-3930k 3.2 Ghz (6 threads) 16 GB RAM</td>
<td>Nvidia 560 Ti 448 cores 1.25 GB RAM</td>
</tr>
</tbody>
</table>
RENDERING HEATMAPS

- GEOPS uses CUDA to render heatmaps of “relative intensity” of text terms and other attributes over geographic space.
- “Matches” projected to one raster, all observations to another.
 - If using multiple GPUs, these “point” rasters are then sent to one GPU to render final heatmap.
- Amazon EC2 instance can project 1.2 billion points/sec (2 x C2050 GPUs).
- Variable-sized Gaussian filter is then applied to each raster.
 - Scales in constant time for # of features, linearly by raster area and geometrically by filter size.
- First raster is divided by second to get relative intensity.
- One GPU can render 1920 X 1080 heatmap in 0.05 seconds (20 frames/sec).
THE GRIM TWEEPER (AKA THE POOR MAN’S FIREHOSE)

- The Grim Tweeper is a distributed cloud harvester for Twitter that allows for collection and geotagging of tweets within user-defined bounding circles.

3 Parts:
- Cloud Harvesters on EC2 Micro Instances ($0.02/ hr each)
- Master node that collects tweets from harvesters and geotags them in real-time
 - Tweets are then placed in temporally partitioned PostgreSQL tables
 - A plug-in module to GEOPS allows streaming tweets onto GPU in real-time
- Web front end allows for control of harvester instances and real-time monitoring of their output (volume and location)

- Tweets geotagged using in-memory hash table of GeoNames database and user-provided location tags (along with location of bounding circle – IP address determined)

- 15 harvesters over half of US collected 50 million tweets / day, suggesting that most of the firehose is collected (300-400 millions tweets per day for whole world)
 - Impossible with standard API access (without firehose access)