Geog 480: Principles of GIS

Models of geospatial information

Anand Padmanabhan

CyberInfrastructure and Geospatial Information Laboratory
CyberGIS Center for Advanced Digital and Spatial Studies
Department of Geography and Geographic Information Science
National Center for Supercomputing Applications (NCSA)
University of Illinois at Urbana-Champaign
General Principles

• Nature of Geographic Data
• Elements of GIS and Relevant GIS Terminology
• GIS Functionality
• Data Modeling
Fundamental Database Concepts

- Database Characteristics
- DBMS Elements
- Metadata
- Database Transaction Support
- Database Models
- Relational Model
- Operations on Relations and Relational Algebra
- Structured Query Language (SQL)
- Entity-relationship model (E-R)
- Extended Entity-Relationship Model
- Object-oriented (O-O) Constructs
- O-O Modeling
Fundamental Spatial Concepts

• Spatial Concepts
• Euclidean Space
• Set-based Geometry of Space
 o Set Characteristics
 o Set Operations
 o Relations of Sets
 o Function Properties
 o Convexity
• Topological Space
 o Neighborhood
 o Usual Topology
 o Near Point
 o Properties of a Topological Space
 o Connectedness
• Network Space
 o Graph
 o Tree
• Metric Space
Models of Geospatial Information

- Ontology
- Morphism
- Types of Models
 - Field-Based Models
 - Field-Based Modeling Method
 - Properties of Attribute Domain
 - Properties of a Spatial Field
 - Spatial Autocorrelation
 - Field Operations
 - Object-based Models
 - Spatial Objects
 - Spatial Operations
 - Set-Oriented Operations
 - Topological Operations
 - 4-Intersection Model
Example Question 1

- Is the UTM (Universal Transverse Mercator) projection a surjection function? Why or why not?
What does encapsulation do in object-oriented modeling and why is it used? Please give an example of applying encapsulation.
Example Question 3

• Consider a relation R(A, B) that has cardinality r (contains r tuples), and a relation S(A, B) that has cardinality s (contains s tuples). Assume r > 0 and s > 0 and make no assumptions about keys. For the following relational algebra expression, state in terms of r and s the minimum and maximum cardinality (number of tuples) that could be in the result of the expression.

 o R U S
• End of this topic