Geog 480: Principles of GIS

Fundamental spatial concepts - II

Anand Padmanabhan

CyberInfrastructure and Geospatial Information Laboratory
CyberGIS Center for Advanced Digital and Spatial Studies
Department of Geography and Geographic Information Science
National Center for Supercomputing Applications (NCSA)
University of Illinois at Urbana-Champaign
Topology of space

- **Topology**: “study of form”; concerns properties that are invariant under topological transformations
- **Intuitively**, topological transformations are rubber sheet transformations

<table>
<thead>
<tr>
<th>Topological</th>
<th>Non-topological</th>
</tr>
</thead>
<tbody>
<tr>
<td>A point is at an end-point of an arc</td>
<td>Distance between two points</td>
</tr>
<tr>
<td>A point is on the boundary of an area</td>
<td>Bearing of one point from another point</td>
</tr>
<tr>
<td>A point is in the interior/exterior of an area</td>
<td>Length of an arc</td>
</tr>
<tr>
<td>An arc is simple</td>
<td>Perimeter of an area</td>
</tr>
<tr>
<td>An area is open/closed/simple</td>
<td></td>
</tr>
<tr>
<td>An area is connected</td>
<td></td>
</tr>
</tbody>
</table>
Point set topology

• One way of defining a topological space is with the idea of a *neighborhood*

• Let S be a given set of points. A *topological space* is a collection of subsets of S, called *neighborhoods*, that satisfy the following two conditions:
 ○ $T1$ Every point in S is in some neighborhood.
 ○ $T2$ The intersection of any two neighborhoods of any point x in S contains a neighborhood of x

• Points in the Cartesian plane and *open disks* (circles surrounding the points) form a topology
Point set topology

Each point is in a neighborhood.

The intersection of two neighborhoods of a point contains a neighborhood of that point.
Usual topology

- **Usual topology**: naturally comes to mind with Euclidean plane and corresponds to the rubber-sheet topology
 - Validate T_1 and T_2
Travel time topology

- Let S be the set of points in a region of the plane
- Suppose:
 - the region contains a transportation network and
 - we know the average travel time between any two points in the region using the network, following the optimal route
- Assume travel time relation is symmetric
- For each time t greater than zero, define a t-zone around point x to be the set of all points reachable from x in less than time t
Travel time topology

- Let the neighborhoods be all t-zones around a point
- Verify T1 and T2
Near point

- Let S be a topological space
- Then S has a set of neighborhoods associated with it. Let C be a subset of points in S and c an individual point in S
- Define c to be near C if every neighborhood of c contains some point of C
Properties of a topological space

- **Open set**
 - Every point of a set can be surrounded by a neighborhood that is entirely within the set

- **Closed set**
 - A set contains all its near points

- **Closure (X^-)**
 - The union of a point set with the set of all its near points
Properties of a topological space

• **Interior** (X^o) of a point set
 - Consists of all points that belong to the set and are not near points of the complement of the set

• **Boundary of a point set** (∂X)
 - Consists of all points that are near to both the set and its complement

• **Connectedness**
 - Partition into two non-empty disjoint subsets: A and B
 - Either A contains a point near B
 - Or B contains a point near A
Open and closed sets

- Let S be a topological space and X be a subset of points of S.
 - Then X is open if every point of X can be surrounded by a neighborhood that is entirely within X
 - A set that does not contain its boundary
 - Then X is closed if it contains all its near points
 - A set that does contain its boundary
Closure, boundary, interior

- Let S be a topological space and X be a subset of points of S

 - The **closure** of X is the union of X with the set of all its near points
 - denoted X^-
 - The **interior** of X consists of all points which belong to X and are not near points of X'
 - denoted $X^°$
 - The **boundary** of X consists of all points which are near to both X and X'. The boundary of set X is denoted ∂X
Topology and embedding space

2-space

1-space
Topological invariants

- Properties that are preserved by topological transformations are called *topological invariants*
Connectedness

- Let S be a topological space and X be a subset of points of S
- Then X is **connected** if whenever it is partitioned into two non-empty disjoint subsets, A and B,
 - either A contains a point near B, or B contains a point near A, or both
- A set in a topological space is **path-connected** if any two points in the set can be joined by a path that lies wholly in the set
Connectedness

- A set X in the Euclidean plane with the usual topology is *weakly connected* if it is possible to transform X into an unconnected set by the removal of a finite number of points.
- A set X in the Euclidean plane with the usual topology is *strongly connected* if it is connected and not weakly connected.
Connectedness

disconnected

Strongly connected Weakly connected
Network spaces - abstract graphs

- A **graph** G is defined as a finite non-empty set of **nodes** together with a set of unordered pairs of distinct nodes (called **edges**)
 - Highly abstract
 - Represents connectedness between elements of the space

- Directed graph

- Labeled graph
Abstract graphs

- Connected graph
- Edges
- Path
- Cycle
- Nodes
- Degree
- Isomorphic
- Directed/ non-directed
Tree

- Connected graph
- Acyclic
- Non-isomorphic
Rooted tree

- Root
- Immediate descendants
- Leaf
Metric space - definition

- A point-set S is a *metric space* if there is a distance function d, which takes ordered pairs (s,t) of elements of S and returns a distance that satisfies the following conditions:
 - For each pair s, t in S, $d(s,t) > 0$ if s and t are distinct points and $d(s,t) = 0$ if s and t are identical.
 - For each pair s,t in S, the distance from s to t is equal to the distance from t to s, $d(s,t) = d(t,s)$.
 - For each triple s,t,u in S, the sum of the distances from s to t and from t to u is always at least as large as the distance from s to u.
Distances defined on the globe

- Metric space
 - Geodesic distance
 - Manhattan distance
 - Travel time distance
- Quasimetric
 - Lexicographic distance
• End of this topic